RFC 2631 Diffie-Hellman Key Agreement Method

References:

```
RFC 2631, Diffie-Hellman Key Agreement Method
[X942], Agreement Of Symmetric Keys Using Diffie-Hellman and MQV Algorithms, ANSI draft, 1998
```

Implementation under analysis:

Analysis Date:

REQUIREMENT FROM STANDARDS	MET (Y/N/na)	NOTES
In the process of generating keying material from ZZ:		
KM = H (ZZ OtherInfo), where		
$ZZ = (yb \land xa) \mod p = (ya \land xb) \mod p$		
(^ denotes exponentiation) and		
ya is party a's public key; $ya = g \land xa \mod p$ yb is party b's public key; $yb = g \land xb \mod p$ xa is party a's private key xb is party b's private key p is a large prime q is a large prime $g = h \land \{(p-1)/q\} \mod p$, where h is any integer with $1 < h < p-1$ such that $h\{(p-1)/q\} \mod p > 1$ (g has order q mod p; i.e. $g \land q \mod p = 1$ if $g!=1$) j a large integer such that $p=qj+1$		
are the leading zeros of ZZ preserved, so that ZZ occupies as many octets as p? [RFC 2631 2.1.1, 2.1.2, X942]		
For the OtherInfo parameter used to generate keying material, if the partyAlnfo field is provided, does it contain 512 bits? [RFC 2631 2.1.2]		

REQUIREMENT FROM STANDARDS	MET (Y/N/na)	NOTES
For the OtherInfo parameter used to generate keying material, is the partyAlnfo parameter used in Static-Static mode? [RFC 2631 2.1.2]		
When the KEK is generated for 3DES, is the algorithm run twice, once with a counter value of 1 (to generate K1', K2', and the first 32 bits of K3') and once with a counter value of 2 (to generate the last 32 bits of K3)? [RFC 2631 2.1.3]		
For the group parameters of the form p=jq + 1 where q is a large prime of length m and j>=2, is m >=160 bits in length? [RFC 2631 2.2]		
For the group parameters of the form p=jq + 1 where q is a large prime of length m and j>=2, is q at least 160 bits long? [RFC 2631 2.2]		
For the group parameters of the form p=jq + 1 where q is a large prime of length m and j>=2, is p a minimum of 512 bits long? [RFC 2631 2.2]		
If the same ephemeral sender key is used for multiple messages (e.g., it is cached as a performance optimization) then is a separate partyAlnfo used for each message? [RFC 2631 2.3]		
Do all mechanisms implement Ephemeral-Static mode? [RFC 2631 2.3]		
In the Static-Static mode, is the parameter partyAlnfo used (and different for each message) in order to ensure that different messages use different KEKs? [RFC 2631 2.4]		

Δ 41	•	r	4 •
Other	ın	tarm	otion
VIIICI			auvii.

Findings:

Recommendations for Standards Work: